Think about a robotic that may remodel between “flying drone” and “wheeled rover” configurations. It might doubtlessly be fairly helpful, however provided that it really works in real-world circumstances. The ATMO bot was designed to just do that, by performing its transformation in mid-air.
Its title an acronym for Aerially Reworking Morphobot, ATMO was created by a crew of engineers on the California Institute of Expertise (Caltech). The machine builds upon the know-how utilized in a earlier Caltech robotic, the M4 (Multi-Modal Mobility Morphobot).
That specific robotic flew like an everyday quadcopter drone when airborne, with its 4 shrouded propellers unfold out horizontally. As soon as it landed, these props folded inward, till they sat at a downwards proper angle relative to the remainder of the robotic’s physique. They then served as motorized wheels, with the shrouds forming the rubber-treaded rims.
Caltech
Whereas it is a intelligent design, it and others prefer it have one flaw. If there are rocks, tufts of grass or different protruding obstacles within the touchdown space, they might forestall the propellers from folding all the way in which in. The answer to that downside is to have the robotic land with its props/wheels already nearly fully down.
That is the place ATMO is available in.
Though every of its propellers nonetheless has its personal motor for flight, only a single central motor is used to maneuver a single joint that folds these props in (or out). The setup is not so simple as it sounds, nevertheless.

Ioannis Mandralis/Communications Engineering
Because the propeller angle adjustments, and because the air pushed down by the props begins deflecting off the approaching floor, the flight traits of ATMO change accordingly. Because of this, the scientists needed to develop a particular algorithm that compensates for these altering variables by constantly adjusting the thrust delivered by every propeller.
Consequently, the drone is ready to carry out steady “dynamic wheel landings” with its wheels/props already down. It may well then zip off throughout the bottom, with one belt drive on all sides spinning up the wheels. Steering is managed through a differential that independently varies the velocity of these drives.

Ioannis Mandralis/Communications Engineering
“Right here we introduce a dynamic system that hasn’t been studied earlier than,” says Ioannis Mandralis, lead writer of a paper on the research. “As quickly because the robotic begins morphing, you get totally different dynamic couplings – totally different forces interacting with each other. And the management system has to have the ability to reply shortly to all of that.”
The paper was just lately revealed within the journal Communications Engineering. You’ll be able to see ATMO in mighty morphin’ motion, within the video beneath.
ATMO Robotic Transforms in Midair for Floor Mobility
Supply: Caltech